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Abstract: The propagation of a given phenomena in a social network is an important topic 

of research in network science.  This presentation introduces our study of the “mean 
time to fixation” (MTF) problem – that is the average amount of time required for a 
phenomenon to spread to the entire population in the network.  We study this 
problem under the well-known propagation models of the invasion process, voter 
dynamics, and link dynamics.  We devise an algorithm that produces a provable and 
non-trivial lower bound on MTF as well as show this approach to be experimentally 
viable.  Our results provide insight into various propagation problems on social 
networks -– including the non-monotonic spread of influence and emergence of 
cooperation. 

  
 



Evolutionary Graphs in Social Sciences 

Take a population of individuals who may either 
choose to cooperate or defect with a neighbor in 
any interaction.  The relationships between these 
individuals may be modeled with an evolutionary 
graph.   

 

The time it takes for cooperation to spread 
throughout the population is the mean time to 
fixation. 
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Non-Monotonic Diffusion 

Non-monotonic graphs are studied in 
evolutionary graph theory, where a 
population is modeled as a network of 
mutant and resident nodes.  [1] 

 

Every time step the number of mutants may 
either increase or decrease. 



Non-Monotonic Diffusion: 
The Birth-Death Process 

This research was done with a birth-death 
process. 

 
At each time step, a node B is chosen without 

preference from the graph. 
 
D is chosen with a probability proportionate to the 

weight of outgoing edges from B. 
 
B’s character, resident or mutant, is cloned onto D. 
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Non-Monotonic Diffusion: 
Death-Birth and Link-Dynamics  

Death-Birth: An alternative method where a 
node is chosen impartially to die, and a 
neighbor node is chosen proportional to 
the incoming edges and cloned over the 
dead node. 

Link-Dynamics: Edges are chosen, and 
transfer of mutant or resident properties 
moves across the edge. 



Non-Monotonic Diffusion 

Other variants on the aforementioned models 
exist which have undirected edges. 

 

The link dynamics, death birth and other variant 
processes were not used in this research, but 
our theorem can be applied to them as well. 



Applications of Evolutionary Graphs 

Evolution of Cooperation in Social Networks 

 [2] Ohtsuki, Hauert, Lieberman, & Nowak 

Animal Migrations 

 [6] Zhang, Nie, & Hu 

Primate Habits 

 [5] Voelkl & Kasper 

Interactive Particle Systems 

 [4] Sood, Antal, & Redner 



Fixation Probability 

The probability that a graph with an initial 
configuration of mutants and residents will 
result in a completely mutant graph. 



Mean Time to Fixation 

The average time it takes for a graph to reach 
fixation. 



Fixation Probability Approaches 

Monte Carlo simulations 

Shortened Simulation 

 assume fixation once a certain mutant density 
threshold is reached 

Special Case analyzed for particular solutions 

Deterministic Algorithms 



Mean Time to Fixation Approaches  
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Monte Carlo Simulations 

 

Special Cases analyzed for particular solutions 

 
Can we develop a deterministic method for 
mean time to fixation? 
 

Mean Time to Fixation Approaches  



Mean Time to Fixation 

Time to fixation, tc, traditionally relies on the 
probability of fixation Pc at each time step.   



Theorem 
Shakarian and Roos [2] developed an algorithm 

which provides probability of being a mutant 
at each time step for each vertex.  They prove 
that vertex probabilities and fixation 
probability converge as time goes to infinity. 

 



Theorem 

 

 

 

mini(Pri
t) is the minimum probability of being a 

mutant for any node in the graph at time t. 

 

As mini(Pri
t) is an upper bound on PC

t, we use an 
accounting method to prove the bound above. 
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Demonstration 
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Demonstration 
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Example Run 

Simulation Mean Time to Fixation: 37 steps 

 averaged over 10,000 trials in .946 sec. 

 

Algorithm Mean Time to Fixation: 38 steps 

 Convergence at STD[Pr(M(t)
i)] <= .00001 in 

.031 sec. 



Results 

The following represent a sampling of the scale 
free graphs in our preliminary tests. 
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Future Work 

Determine what topographies facilitate a tight 
lower bound for the algorithm.   

 

Game theory extensions on cooperation mean 
time to fixation. 
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